“USES OF LOW COPPER AMALGAM ALLOYS IN DENTISTRY”

Gaurav Solanki

Jodhpur National University, Jhanwar Road, Narnadi, Jodhpur-324003, (Rajasthan) India.

Corresponding author: drgauravsolanki@yahoo.com

This article is available online at www.ssjournals.com

ABSTRACT

A filling is the repair of a damaged or decayed tooth, restoring it back to its normal shape, appearance and function. Amalgam Restoration is an example of the material giving its name to the process. Amalgam fillings are made up of mercury, powdered silver and tin. They are mixed and packed into cavities in teeth where it hardens slowly and replaces the missing tooth substance. This article throws light on low copper alloys of dental amalgam, its advantages, disadvantages and contraindications. A review of some patents on amalgam is also provided that summarizes the recent technical advancements taken place in this area.

KEY WORDS: Amalgam, low copper, uses, advantages, patents

1. INTRODUCTION

A dental restoration is also called a filling. It is the repair of a damaged or decayed tooth, restoring it back to its normal shape, appearance and function. The name of the material that is used to repair a tooth is often the name given to the repair process. "Amalgam Restoration" is an example of the material giving its name to the process. Low copper amalgams are also known as "traditional" or "conventional" and have been used for many decades (even at present) and contain less than 6% copper\(^1,2\). Dental amalgam is a combination of mercury with other metals and has been used for over 150 years for the treatment of tooth cavities because it is very strong and durable. It is also soft to adapt to the size and shape of the tooth cavity, yet hardens sufficiently fast to make it practical. It is still considered a material of choice for some fillings in the back teeth, the use of amalgams has been decreasing in recent years, because it is not tooth-colored and does not adhere to the surface of the tooth. Alternative tooth-colored filling materials have become increasingly popular. Not only do these materials look better, but they require the dentist to remove less tooth material and they do not contain mercury also. Amalgam fillings (silver fillings) are made up of mercury, powdered silver and tin. They are mixed and packed into cavities in teeth. It hardens slowly, and replaces the missing tooth substance. Amalgam fillings are held in place by the shape of the prepared cavity\(^3\). The cavity has to have an undercut to prevent the filling from falling out. The amalgam is then slotted into the cavity. It is still commonly used, despite an ongoing debate about mercury toxicity\(^4,5\).

2. CLASSIFICATION OF AMALGAM ALLOYS

2.1 According to content\(^6,7\)

- **Silver Amalgam**: Silver more than 65%.
- **Copper Amalgam**: 70% Hg and 30% Cu.
- **Preamalgamated alloys**: Contain less than 3% of Hg.
- **Noble metal amalgam alloys**: Contain Au and/or Pd.

2.2 According to presence or absence of Zinc\(^8,9\)

- **Zinc-containing alloys**: More than 0.01% Zn.
- **Zinc-free alloys**: Less than 0.01% Zn.

1.3. According to Copper content\(^10\)

- **Low Copper alloys (2-4% Cu)**
- **High copper alloys (13-30% Cu)**
 - Admixed alloy (1/3rd Low Cu + 2/3rd Ag-Cu eutectic)
 - Unicompositional or Single compositional alloy

2.4 According to number of metals in the alloy\(^11\)

- **Binary alloy**: Ag; Sn
- **Ternary alloy**: Ag; Sn; Cu
- **Quaternary alloys**: Ag; Sn; Cu; In.
2.5 According to the shape of alloy particles
- Spherical (Smooth shaped spheres)
- Spheroidal (Irregular shaped spheres)
- Lathe-cut (Irregular shavings or filings). It is of three types: Micro-cut, Fine-cut and Coarse cut.

2.6 According to development of Amalgam alloys
- 1st generation amalgam alloys: G.V. Black's formulation of 3 parts Ag and 1 part Sn
- 2nd generation amalgam alloys: Addition of 4% Cu and upto 1% Zn
- 3rd generation amalgam alloys: Admixed alloys.
- 4th generation amalgam alloys: Ternary alloys - Addition of Cu to Ag and Sn to form Ag2CuSn.
- 5th generation amalgam alloys: Quaternary alloys - Ag, Sn, Cu, and Indium.
- 6th generation amalgam alloys: Ag-Cu-Pd eutectic alloy (62%, 28%, and 10% respectively) is added in a ratio of 1:2 to low Cu alloy.

3. PHASES OF DENTAL AMALGAM
- Gamma: AgSn
- Gamma 1: AgHg
- Gamma 2: SnHg
- Epsilon: CuSn
- Eta: CuSn
- Beta: AgSn
- Beta 1: AgHg
- Beta (Galloy): GaCu + Sn

4. COMPONENTS
4.1 Silver: Increases strength, expansion and reactivity. Decreases creep.
Corrosion products are AgCl and AgS.

4.2 Tin: Increases reactivity and corrosion. Decreases strength and hardness.
Corrosion products are SnO, SnCl, and SnS.

4.3 Copper: Increases strength, expansion and hardness. Decreases creep.
Corrosion products are CuO and CuS.

4.4 Zinc: Increases plasticity, strength and the Hg: alloy ratio. Decreases creep. Causes secondary expansion. Corrosion products are ZnCl and ZnO.

4.5 Mercury: Wets the alloy particles. Decreases strength if in excess amounts. Implicated in toxic and allergic reactions.

5. COMPOSITION OF LOW COPPER ALLOYS
- Silver: 65% min.
- Tin: 29% max.
- Copper: 6% max.
- Mercury: 3% max.
- Zinc: 2% max.

6. SETTING REACTION OF LOW COPPER ALLOYS
This is a process by which liquid Hg reacts with dental amalgam alloy particles to produce a matrix of intermetallic compounds of Hg with metals of the alloy.

\[
\text{Ag}_3\text{Sn} + \text{Hg} \rightarrow \text{Ag}_2\text{Hg}_3 + \text{Sn}_2\text{Hg}_8 + \text{Ag}_5\text{Sn}
\]

7. ADVANTAGES OF DENTAL AMALGAM
- Durable
- Least technique sensitive of all restorative materials
- Applicable to a broad range of clinical situations
- Newer formulations have greater long-term resistance to surface corrosion
- Good long-term clinical performance
- Ease of manipulation by dentist
- Minimal placement time compared to other materials
- Initially, corrosion products seal the tooth-restoration interface and prevent bacterial leakage.
- One appointment placement (direct material)
- Long lasting if placed under ideal conditions
- Often can be repaired
- Economical
- Relatively inexpensive.
- Easy to manipulate.
- Restoration is completed within one sitting without requiring much chair time.
- Well-condensed and triturated amalgams have good compressive strengths.
- Sealing ability improves with age by formation of corrosion products at tooth-amalgam interface.
- Relatively not technique sensitive.

8. DISADVANTAGES OF DENTAL AMALGAM
- Some destruction of sound tooth tissue
9. CAN BE USED IN
- In patients of all ages
- Stress bearing areas
- In small to moderate size cavities
- In patients with poor oral hygiene
- When moisture control is a problem
- In low economic status patients
- As a foundation to metal ceramic, cast metal restorations
- As a filling material for Class I and Class II cavities.
- Can be used for Class V cavities of posterior teeth.
- Sometimes can be used for cuspal restorations (with pins usually).
- As a core build-up material prior to cast restoration.
- As a retrograde filling material.
- In combination with Composite resin for cavities in posterior teeth. Resin veneer over amalgam.

10. HOW TO AVOID FAILURES OF RESTORATION
- complete removal of dental caries
- complete and proper base application
- proper isolation while placement of the restoration
- avoid bulk placement of material
- avoid contact with fingers or gloved hands
- keep cavity as small as possible
- avoid sharp internal line angles
- use small increments
- Restoration at bevelled areas should be polished properly

11. CONTRAINDICATIONS OF DENTAL AMALGAM
- A large filling is needed and the cost of other restorative materials is not a major factor in the treatment decision.
- Where esthetics are important, such as in the anterior teeth and lingual endodontic-access (root canal) restorations of the anterior teeth.
- A large restoration is needed and the cost of other restorative materials is not a significant factor in the treatment decision.
- Patients having a history of allergy to mercury or other amalgam components.

12. MERCURY TOXICITY
- Dental amalgam fillings occasionally cause local effects in the mouth, such as allergic reactions of the gums and skin inside the mouth, but this happens only rarely and is normally easy to manage. Mercury toxicity may cause signs like Tremor, Headache, Ataxia, Irritability, Personality change, Slowed nerve conduction, Loss of memory, Weight loss, Insomnia, Appetite loss, Fatigue, Gingivitis, Depression, Psychological distress, etc. Dental workers are more exposed to mercury toxicity than the general population. People are mainly exposed to elemental mercury by breathing in its vapour, since contact with the skin or ingestion leads to very little absorption into the body. Mercury vapour is absorbed in the lungs, spreads to the entire body and is then slowly excreted. Breathing in extremely high concentrations of mercury may produce bronchitis and pneumonia and affect the central system, for instance leading to muscle tremors. Long-term exposure to high levels may affect the kidneys and the inside of the mouth and gums. However, the amount released by dental amalgams is much lower than the limits allowed for exposure at work.

13. SOME PATENTS ON AMALGAM RESTORATIONS
13.1 Amalgamatable dental alloy powder having an effect of reducing initial mercury vapor release rate: It provides an...
amalgamatable dental alloy powder for
making an amalgam having a low initial
mercury vapor release rate having a
composition comprising 50-80 wt % Ag; 10-
30 wt % Cu, and 10-35 wt % Sn, and
optionally less than 7 wt % of Pd, which is
prepared by subjecting a single-alloy powder
having a particle size ranging from 1 to 55
microns with a majority thereof having a
particle size less than 20 microns to a heat
treatment, or separately subjecting a Ag--Cu--
Sn powder having a particle size ranging from
1 to 70 microns with a majority thereof having
a particle size less than 30 microns and a Ag--
Cu--Pd powder having a particle size ranging
from 1 to 100 microns with a majority thereof
having a particle size less than 45 microns to
heat treatments, and subjecting the heat treated
powders to a pickling treatment.

13.2 Anti-tarnish silver alloy: An anti-tarnish
silver alloy is provided including at least about
85% silver, with the balance including zinc,
copper, indium, and tin. Also provided are
articles made from the alloy and methods of
making the articles.

○ Dental amalgam alloy: The present
invention relates to low in silver particulate
dental amalgam alloys comprising by weight
from about 46 to 48% silver, about 23 to 33%
tin, about 20 to 28% copper and about 0.5 to
5% indium. The dental amalgam alloys of the
present invention have been found to be
particularly efficacious when incorporated in
blends with high silver particulate dental
amalgam alloys, said high silver alloys being
used in amounts between about 30% and 70% of
the total alloy blend.

○ Method For Bonding Amalgam To Dental
Surfaces: A method for adhering amalgam to
dental surfaces comprising the steps of a)
etching the dental surface with acid, b)
applying a treatment composition comprising
an aromatic sulfinate salt to the etched dental
surface, c) applying a priming solution
containing a film-former to the treated dental
surface, d) applying a chemically curable
dental adhesive to the primed dental surface,
and e) applying amalgam to the adhesive-
coated dental surface. The chemically curable
adhesive comprises an oxidizing agent and a
reducing agent. The oxidizing agent is present
in an amount sufficient to interact with said
aromatic sulfinate salt to achieve higher
adhesion to the dental surface than a like
method not comprising an aromatic sulfinate
salt in the treatment composition.

13.5. Silver-tin-copper-palladium alloy and
amalgam thereof: In this, the inventors
Asgar k and steven H tells us about a silver-
tin-copper-palladium alloy which contains
from 30 to 70% silver, 15 to 37% tin, at least
13% copper and from 0.05 to 0.95%
palladium; and an amalgam thereof. These all
increases the working capacity of the amalgam
and also increases its strength.

CONCLUSION
Dental amalgam not only corrects the
damaged tooth but also restores the esthetics,
phonetics and function of the tooth. Proper
treatment should be done to avoid any
complications and to make tooth appear more
natural. Every treatment should be done
according to the particular patient’s condition
and work should be done in such a way that
most portion of natural tooth is protected from
damage. Hope this review will be helpful in
providing some useful information related to
dental amalgam to dental students.

REFERENCES
1. http://www..medicalscience.com/
Medical Devices. ASM International,
3. Ring ME. Dentistry, an illustrated history.
4. Anderson MH, McCoy RB. Dental
amalgam: The state of the art and science.
6. Greener EH. Amalgam--yesterday, today,
and tomorrow. Oper Dent 1979; 4 (1):
24–35.
7. Ferracane, Jack L. Materials in Dentistry:
Principles and Applications. Lippincott
Williams & Wilkins, 2001; pp. 3.
8. Hardy J. Mercury Free Amalgam. Gabriel
Rose Press, Inc; 1996.
9. Westcott A. Report to the Onondongia
Medical Society on metal paste
(amalgam). Am J Dent Sci IV, 1st Ser,
1844: 175-201.
10. Harris, Chapin AaronThe Principles and
Practice of Dental Surgery. Lindsay &
Blakiston, 1845; pp. 270-1.
35. http://jama.amaassn.org/cgi/content/full/295/15/1775.
40. http://jama.amaassn.org/cgi/content/full/295/15/1835.