Correlation of Wasserman’s Equation and Directly Measured \(\text{VO}_2 \text{Max} \) in Indian Population - A Pilot Study

Neha Ashok Gotmare*, Rashmi N. Ronghe and Mangala G. Deshpande

V S P M’s College of Physiotherapy, Nagpur, India

Correspondence Info:
Dr. Neha Ashok Gotmare,
V S P M’s College of Physiotherapy, Nagpur, India

Article History:
Received: 27/06/2016
Revised: 20/01/2017
Accepted: 23/01/2017
DOI: https://dx.doi.org/10.7439/ijbar.v8i1.3401

Abstract

Purpose of study: \(\text{VO}_2 \text{max} \) can be measured by direct and indirect method. Maximal oxygen uptake (\(\text{VO}_2 \text{max} \)) during a graded maximal exercise test is the objective gold standard method to assess cardio respiratory fitness. Direct method (open circuit spirometry) requires specialized trained equipment, trained personnel and is expensive. \(\text{VO}_2 \text{max} \) is measured indirectly through these tests using regression equations. These regression equations have been formulated on the basis of normative data obtained from Caucasian population.

Aim and Objective: To find out the correlation between observed \(\text{VO}_2 \text{max} \) and predicted \(\text{VO}_2 \text{max} \) in Indian population.

Study design: Cross sectional study

Methodology: 22 college students aged between 18-25 years were included after fulfilling the selection criteria demographic data was recorded and vitals were taken before, during and after the procedure. In this \(\text{VO}_2 \text{max} \) was calculated directly by gas analyzer using AD instrument and indirectly by Wasserman’s equation (non exercise based) and data was further analysed statically.

Result: The Interclass Correlation found between direct and indirect methods was 0.39 which shows that there is poor limit of agreement between the two methods.

Conclusion: The Wasserman’s equation was inapplicable to evaluate \(\text{VO}_2 \text{max} \) for the students included in the study.

Keywords: Wasserman’s equation, \(\text{VO}_2 \text{max} \).

1. Introduction

The most important component of physical fitness is cardio respiratory endurance [1]. The criterion to measure cardio respiratory fitness is person’s maximal oxygen uptake. It is the product of maximum cardiac output and arteriovenous oxygen difference \(\{\text{VO}_2 \text{max}=\text{cardiac output}(\text{ao}_2-\text{vo}_2)\} \). Therefore it is directly related to the functional capacity of the heart. It is considered as an important criterion because low cardio respiratory fitness increases the risk of premature death from all causes and specially from cardiovascular diseases[2]. Measurement of physical fitness is a common and appropriate practice in preventive and rehabilitative exercise programs [1]. Oxygen uptake at maximum exercise (\(\text{VO}_2 \text{ max} \)) is considered the best available index for assessment of exercise capacity. Maximal oxygen uptake (\(\text{VO}_2 \text{ max} \)) during a graded maximal exercise test is the objective gold standard method to assess cardiorespiratory fitness and is also used as a predictor of cardiovascular morbidity and mortality [1]. It is the region where oxygen uptake plateaus and shows no further increase/s only slightly with an additional workload. The \(\text{vo2max} \) is measured in either mL/min or mL/kg/min, it quantifies an individual’s maximal ability to utilize oxygen in aerobic production of ATP. The measurement of \(\text{VO}_2 \text{max} \) is used for many purposes including quantifying training intensity for aerobic exercise prescription, monitoring the effect of aerobic training programs, and classifying individuals for health risk[3].

IJBAR (2017) 08 (01) www.ssjournals.com
Determination of maximum oxygen uptake (VO₂ max) by direct method is associated with equipment, space and personnel with through study of exercise science to carry out this test. It is difficult, exhausting and often hazardous to perform with regardless to the type of ergometer used. It is costlier and restricted within the laboratory because of its exhausting and difficult experimental protocol, and also it is complicated for larger population. It is not feasible so the variety of maximal and submaximal tests can be used to estimate VO₂ max [2]. This method requires specialized trained equipment, trained personnel and is expensive. So as it is not feasible and desirable, a variety of sub maximal and maximal exercise tests can be used to estimate VO₂ max[2]. VO₂max is measured indirectly through these tests using regression equations [3]. These regression equations have been formulated on the basis of normative data obtained from Caucasian population. Among various indirect methods Wasserman’s equation is non-exercise based equation which is based on anthropometric measurement [4]. So the purpose of the study was to assess the applicability of Wasserman’s equation to predict VO₂ max in Indian population.

2. Material and methodology

Institutional ethical committee approval was obtained. A cross-sectional study was done at the institute in the physiology lab with normal subjects within the age group of 18-25 years. Within this age group diagnosed cases of Cardiovascular / Respiratory / Neuromuscular / Musculoskeletal / Rheumatologic conditions, uncontrolled metabolic diseases(diabetes, myxedema etc.), any recent ECG changes, lower limb fractures and URTI, mentally challenged and specially abled and participant who could not comprehend the procedure were excluded. All the participants were selected according to sample of convenience and given a thorough explanation of the procedure in the language they understand. Each participant signed written informed consent before participating in the study in the language they could comprehend. Subjects were screened on the basis of selection criteria and PAR-q & you questionnaire [1]. Total 22 participants were selected and demographic and anthropometric data was recorded. Direct measurement VO₂ max was done using Open circuit spirometry (AD instrument) using Modified Bruce protocol [2] to measure VO₂ max in the physiology lab. A prerequisite for the participant before the direct measurement VO₂ max was explained. Participants were asked to drink plenty of fluids, not to engage in any physical activity and to refrain from ingesting food, alcohol, caffeine prior to the test. Indirect using predicted non-exercise based Wasserman’s equation Male: - VO₂ max (L/min) = wt X [50.72-(0.372 X age)]/1000; Female: VO₂ max (L/min) = (wt+42.8) X (22.78-0.17 X age)/1000[4].

Data was analyzed using SPSS version 20.0. Pearson’s co-relation test was used to find out the co-relation between direct and indirect VO₂max. Intra-class correlation coefficient (ICC) was used to find out limit of agreement between two methods.

3. Result

Data analysis revealed no co-relation between direct and predicted VO₂max (r=0.24, p > 0.05) was found - statistically non significant. The ICC between two methods was 0.39 which shows poor limit of agreement. Age (r=0.49, p<0.05) and height (r=0.49, p<0.05) correlated moderately and BMI(r=0.661, p=0.001) showed good co-relation with directly measured VO₂max and were statistically significant. Age and BMI had no-correlation while height is weakly correlated (r=0.112, p>0.05) with predicted VO₂max which was statistically non-significant.

Table 1: Showing weak correlation of Direct and predicted VO₂ max

<table>
<thead>
<tr>
<th>Parameters (VO₂ max)</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct and predicted</td>
<td>0.24</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

4. Discussion

The purpose of this study was to find the correlation between direct and predicted VO₂max in normal population within the age group 18-25 years of Nagpur with the sample size was 22, out of which 16 subjects were female and 6 were male. Direct estimation of VO₂max comprised treadmill exercise while indirect was predicted by Wasserman’s equation based on anthropometric parameters. From the study, results indicated that age (r=0.49, p<0.05) and height (r=0.49, p<0.05) were moderately correlated and BMI (r= -0.661, p=0.001) had good inverse correlation with directly measured VO₂max. Study done by Chatterjee et al has also proved that there is inverse relationship between BMI and VO₂ max [5]. Obese individual has lower VO₂max values than normal weight individual due to the fact that adipose tissue is relatively metabolically inactive [6] and excess body fat impairs cardio-respiratory functions and reduces mechanical efficiency for a given work load [5]. While there is no correlation of age and BMI with predicted VO₂max but has weak correlation with height. So it proves that VO₂max is influenced by many factors which include age, sex, body size, composition and level of aerobic training [7].

The mean and standard deviation of directly measured VO₂max (ml/kg/min) was 2.72 ± 2.57; and predicted by Wassermann’s equation VO₂max was 2.07± 0.46
for the studied population. The resulting ‘r’ value (r=0.242) indicated that VO2max by direct and predicted method are weakly correlated and not statistically significant. The study by Krishna Kumar et al, found that VO2max derived from Wasserman’s equation was not applicable in the studied population which supports the result of present study [3]. The study by Debeaumon et al., in 2016 using Wasserman et al and Glaser et al method were valid to predict VO2peak in obese women and men respectively but found the accuracy of the predictions was low for both methods [8]. Another study done in brazilian population in 2014 suggested that there was difference in directly measured and predicted VO2peak values by Wassermans and Jones equation [9].

The present study found that Intra Class Correlation coefficient (ICC) was also assessed to measures the agreement between two methods which was 0.39. As per the guidelines ICC values above 0.75 indicate good reliability, and those below 0.75 indicate poor to moderate reliability. The ICC value of present study suggests poor limit of agreement between two methods indicating Wasserman’s equation is not applicable to estimate VO2max to the studied population. The study by Reza Ahmadian concluded that direct VO2 max and predicted by the Hansen and Wasserman reference had wide variations in predicted versus directly measured VO2 max which supports the present study [5].

Sample size was small and the study is not applicable to all age groups. So, further studies can be done in different age groups and larger sample size and a normogram and new regression equation should be developed.

5. Conclusion

The present study concludes that there is inapplicability of prediction equation based on anthropometric parameters in the population under study. Thus it is not applicable to evaluate aerobic fitness in terms of VO2max for the studied Indian population of Nagpur.

References